Chercheurs / Researchers

Améliorer le dialogue entre les sciences cognitives et l’éducation en s’inspirant des relations entre la recherche fondamentale et la médecine clinique

Pasquinelli, E. (2015). Améliorer le dialogue entre les sciences cognitives et l’éducation en s’inspirant des relations entre la recherche fondamentale et la médecine clinique. A.N.A.E., 27(134), 23-30.

RÉSUMÉ : L’objectif de la présente contribution est d’élucider certaines raisons et limites de la rencontre entre sciences de la cognition et éducation, et de permettre une réflexion posée sur la manière dont la médecine fondée sur les preuves et la médecine translationnelle peuvent servir de sources d’inspiration pour développer une approche scientifique en éducation qui sache respecter les spécificités de cette dernière.
Mots clés : Éducation – Cognition – Médecine – Évidence – Recherche translationnelle.


SUMMARY: The present contribution discusses reasons and limits for favoring the encounter between cognitive science and education. It proposes a reflection on why and how medicine (especially evidence-based medicine and translational medicine) can be considered as sources of inspiration for developing a scientific approach to education, tailored to the specificities of educational aims and strategies.
Key words: Education – Cognition – Medicine – Evidence – Translational research.


RESUMEN: El objetivo de la presente contribución es aclarar ciertos motivos y límites en el encuentro entre ciencias de la cognición y la educación, y reflexionar sobre la forma en la que la medicina basada en las pruebas y la medicina traslacional pueden servir como fuente de inspiración para desarrollar un enfoque científico en educación que mantenga el respeto de las especificidades de esta última.
Palabras clave: Educación – Cognición – Medicina – Evidencia – Investigación traslacional.

Cliquer ici pour télécharger l'article / Click here to download full text (pdf)

Les apports de la neuroéducation à l’enseignement : des neuromythes aux découvertes actuelles

Masson, S. (2015). Les apports de la neuroéducation à l’enseignement : des neuromythes aux découvertes actuelles. A.N.A.E., 27(134), 11-22. 

RÉSUMÉ : Cet article présente quelques-uns des apports de la neuroéducation à l’éducation et, plus spécifiquement, à l’enseignement. Le premier de ces apports est l’identification de neuromythes, c’est-à-dire de fausses croyances sur le fonctionnement du cerveau très fréquentes dans le milieu de l’éducation. Parmi les autres apports discutés dans cet article se trouvent l’identification de contraintes cérébrales pouvant influencer les apprentissages scolaires et le rôle du recyclage neuronal et de l’inhibition dans certains apprentissages scolaires difficiles.
Mots-clés : Neuroéducation – Enseignement – Neuromythes – Inhibition – Recyclage neuronal.

SUMMARY: This article presents some of neuroeducation’s contributions to education and, more specifically, to teaching. The first of these contributions is the identification of neuromyths, i.e. false beliefs about how the brain works very common in education. Other contributions discussed in this article include the identification of cerebral constraints that can affect academic learning, and the role of neuronal recycling and inhibition in some challenging academic contents.
Keywords: Neuroeducation – Teaching – Neuromyths – Inhibition – Neuronal recycling.

RESUMEN: Este artículo presenta algunos conceptos que la neuroeducación aporta a la educación y, más específicamente, a la enseñanza. La primera de estas aportaciones es la identificación de los neuromitos, es decir, de las falsas creencias sobre el funcionamiento del cerebro, muy frecuentes en el medio educativo. Entre las otras aportaciones discutidas en este artículo se encuentran la identificación de las restricciones cerebrales que pueden influir en el aprendizaje escolar y el papel del reciclaje neuronal y de la inhibición en ciertos aprendizajes escolares difíciles.
Palabras clave: Neuroeducación – Enseñanza – Neuromitos – Inhibición – Reciclaje neuronal.

Cliquer ici pour télécharger l'article / Click here to download full text (pdf)

Differences in Brain Activation Between Novices and Experts in Science During a Task Involving a Common Misconception in Electricity

Masson, S., Potvin, P., Riopel, M. et Brault Foisy, L.-M. (2014). Differences in Brain Activation Between Novices and Experts in Science During a Task Involving a Common Misconception in Electricity. Mind, Brain and Education, 8(1), 44-55.

 

ABSTRACT

Science education studies have revealed that students often have misconceptions about how nature works, but what happens to misconceptions after a conceptual change remains poorly understood. Are misconceptions rejected and replaced by scientific conceptions, or are they still present in students' minds, coexisting with newly acquired scientific conceptions? In this study, we use functional magnetic resonance imaging (fMRI) to compare brain activation between novices and experts in science when they evaluate the correctness of simple electric circuits. Results show that experts, more than novices, activate brain areas involved in inhibition when they evaluate electric circuits in which a bulb lights up, even though there is only one wire connecting it to the battery. These findings suggest that experts may still have a misconception encoded in the neural networks of their brains that must be inhibited in order to answer scientifically.

Lien vers l'articlehttp://onlinelibrary.wiley.com/enhanced/doi/10.1111/mbe.12043/

Using fMRI to compare cerebral activations between novices and experts in science during a task in mechanics involving a common misconception

Brault-Foisy, L.-M., Masson, S., Potvin, P., & Riopel, M. (2013, June 15th). Using fMRI to compare cerebral activations between novices and experts in science during a task in mechanics involving a common misconception. Paper presented at the Canada-Israel Symposium on Brain Plasticity, Learning and Education, , Western University, London, Canada 

Abstract

In the process of teaching science, educational interventions are often challenged by students’ misconceptions about various phenomena. Specifically, mechanics is an important field of physical sciences that has been shown to be one of the most difficult to learn for students. The process of science learning has been studied a lot over the past years but there is still no consensus as to what happens to the initial conceptions of students during learning. Are these initial conceptions replaced, reorganized, integrated into a new, broader theory or do they remain present, therefore coexisting with new scientific knowledge? The main objective of this research was to determine whether experts in mechanics still hold misconceptions in their brain, which they have to inhibit in order to answer scientifically. Two groups of participants were compared: a group of novices who have not undergone a conceptual change in learning mechanics and a group of experts who are presumed to have already achieved a conceptual change. An fMRI protocol was used to obtain functional brain images while doing a cognitive task in mechanics. Two types of movies were presented: Newtonian movies (in accordance with Newton's laws of motion) and naive movies (not in accordance). Participants were asked to judge whether the movies were scientifically correct or incorrect. The results show that experts activate, significantly more than novices, areas associated with inhibition (dorsolateral and ventrolateral prefrontal cortex) when they evaluate naïve stimuli, thus suggesting that mechanics expertise would be linked to the ability to inhibit its misconceptions. 

 To read the poster, click here.

Using fMRI to compare cerebral activations between novices and experts in science during a task in mechanics involving a common misconception

2012-05-24_BraultFoisy2012.png

Brault Foisy, L.-M., Masson, S., Potvin, P., & Riopel, M. (2012, May 24-26). Using fMRI to compare cerebral activations between novices and experts in science during a task in mechanics involving a common misconception. Paper presented at the Meeting of the Special Interest Group (SIG) 22 "Neuroscience and Education" of the European Association for Research on Learning and Instruction (EARLI), University of London, United Kingdom.

Abstract

In the process of teaching science, educational interventions are often challenged by students’ misconceptions about various natural phenomena. Those misconceptions are not only common, but they are also particularly difficult to eradicate, their persistence thus becoming a fundamental obstacle to science learning. Specifically, mechanics is an important field of physical sciences that has been shown to be one of the most difficult to learn for students. The main objective of this research was to determine whether the brain regions usually associated with inhibition (including the anterior cingulate cortex and the dorsolateral prefrontal cortex) play a role in the expertise in mechanics. Two groups of participants were compared: a group of novices who have not undergone a conceptual change in learning mechanics and a group of experts who are presumed to have already achieved a conceptual change. An fMRI protocol was used to obtain functional brain images while doing a cognitive task in mechanics. Two types of movies were presented: Newtonian movies, which were consistent with Newton's laws of motion and naive movies, which were not. Participants were asked to judge whether the movies were scientifically correct or incorrect. First results will be presented at this conference. 

 Pour consulter l'affiche, cliquez ici.