Effects of Teaching the Concept of Neuroplasticity to Induce a Growth Mindset on Motivation, Achievement, and Brain Activity: A Meta-Analysis

SCIENTIFIC ARTICLE / ARTICLE SCIENTIFIQUE

Sarrasin, J. B., Nenciovici, L., Foisy, L. M. B., Allaire-Duquette, G., Riopel, M., & Masson, S. (2018). Effects of Teaching the Concept of Neuroplasticity to Induce a Growth Mindset on Motivation, Achievement, and Brain Activity: A Meta-Analysis. Trends in Neuroscience and Education, 12, 22-31.

DOI: https://doi.org/10.1016/j.tine.2018.07.003

Traduction libre du résumé:

Il a été démontré que l’induction d’un état d'esprit de développement (growth mindset) chez les élèves avait un impact positif sur la motivation, la réussite scolaire et l’activité cérébrale. Cependant, certaines études ont donné des résultats différents et les auteurs fournissent rarement des raisons pour expliquer cette incohérence. Afin de mieux comprendre les preuves contradictoires, nous avons effectué une méta-analyse de 10 études évaluées par des pairs, dont les participants étaient âgés de 7 ans à l'âge adulte. Les résultats montrent qu'induire un état d'esprit de développement en enseignant le concept de neuroplasticité a un effet positif sur la motivation, la réussite et l’activité cérébrale. Les résultats révèlent également que cette intervention semble plus bénéfique pour les élèves à risque, en particulier en ce qui concerne les résultats en mathématiques. Ces résultats suggèrent donc que les incohérences entre les études empiriques sur le sujet pourraient être expliquées par les caractéristiques des élèves et la matière scolaire.

Special Issue / Numéro thématique : The Development of the Mathematical Brain

ARTICLES SCIENTIFIQUES / SCIENTIFIC ARTICLES

Ansari, D. & Hyde, D. C. (ed.). (2018). The Development of the Mathematical Brain. Developmental Cognitive Neuroscience, 30, 236-343.

Lien vers tous les articles / Link to all articles


Articles
 

Advances in Understanding the Development of the Mathematical Brain

Pages 236-238

Daniel C. Hyde, Daniel Ansari

 

Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies

Pages 239-250

Marie Arsalidou, Matthew Pawliw-Levac, Mahsa Sadeghi, Juan Pascual-Leone

 

Where arithmetic and phonology meet: The meta-analytic convergence of arithmetic and phonological processing in the brain

Pages 251-264

Courtney Pollack, Nicole C. Ashby

 

Arithmetic in the developing brain: A review of brain imaging studies

Pages 265-279

Lien Peters, Bert De Smedt

 

Prospective relations between resting-state connectivity of parietal subdivisions and arithmetic competence

Pages 280-290

Gavin R. Price, Darren J. Yeo, Eric D. Wilkey, Laurie E. Cutting

 

Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention

Pages 291-303

Lars Michels, Ruth O’Gorman, Karin Kucian

 

Resilience in mathematics after early brain injury: The roles of parental input and early plasticity

Pages 304-313

Dana E. Glenn, Özlem Ece Demir-Lira, Dominic J. Gibson, Eliza L. Congdon, Susan C. Levine

 

On the role of visual experience in mathematical development: Evidence from blind mathematicians

Pages 314-323

Marie Amalric, Isabelle Denghien, Stanislas Dehaene

 

Hippocampal spatial mechanisms relate to the development of arithmetic symbol processing in children

Pages 324-332

Romain Mathieu, Justine Epinat-Duclos, Jessica Léone, Michel Fayol, ... Jérôme Prado

 

A neural basis for the visual sense of number and its development: A steady-state visual evoked potential study in children and adults

Pages 333-343

Joonkoo Park

Why Teens Should Understand Their Own Brains (And Why Their Teachers Should, Too!)

Pourquoi les adolescents devraient connaitre et comprendre leur cerveau (tout comme leurs enseignants!)

 

ARTICLE DE VULGARISATION / OUTREACH ARTICLE

par / by : Elissa Nadworny - National Public Radio

 

Introduction:

"A teenage brain is a fascinating, still-changing place. There's a lot going on: social awareness, risk-taking, peer pressure; all are heightened during this period.

Until relatively recently, it was thought that the brain was only actively developing during childhood, but in the last two decades, researchers have confirmed that the brain continues to develop during adolescence — a period of time that can stretch from the middle school years into early adulthood.

'We were always under the assumption that the brain doesn't change very much after childhood,' explains Sarah-Jayne Blakemore, a professor of cognitive neuroscience at University College London.

But that's simply not the case, she says, and educators — and teens themselves — can learn a lot from this.

Blakemore has a new book, Inventing Ourselves, The Secret Life of the Teenage Brain — where she dives into the research and the science — and offers insights into how young adults are thinking, problem-solving and learning. Our conversation has been edited for length and clarity."

Click here to read more / Cliquer ici pour lire l'article

Numéro spécial / Special Issue

Numéro spécial sur les neurosciences dans la revue pédagogique Traces de Changements

Special issue on Neuroscience in the pedagogical journal Traces de Changements 
(in French only)


Traces de Changements, n°235 - Neurosciences - mars-avril 2018

Articles
 

Chronic effects of exercise implemented during school-break time on neurophysiological indices of inhibitory control in adolescents

Effets chroniques de l'exercice intégré lors des temps de pause à l'école sur les indices neurophysiologiques du contrôle inhibiteur des adolescents

SCIENTIFIC ARTICLE / ARTICLE SCIENTIFIQUE

Ludyga, S., Gerber, M., Herrmann, C., Brand, S., & Pühse, U. (2018). Chronic effects of exercise implemented during school-break time on neurophysiological indices of inhibitory control in adolescents. Trends in Neuroscience and Education10, 1-7.

DOI: 10.1016/j.tine.2017.11.001

Abstract

The present study investigated the effects of an exercise intervention, which was implemented during school-break time, on the P300 component of event-related potentials and inhibitory control. Adolescents aged 12–15 years were allocated to an exercise and control group. The exercise group performed 20 min of aerobic and coordinative exercise per school day over a period of 8 weeks. Before and after the intervention, stimulus-locked event-related potentials were recorded during a Stroop task using electroencephalography. Cluster-based permutation testing revealed a greater increase of the P300 amplitude in the exercise compared to the control group, most pronounced for the parieto-occipital region. Additionally, increases in P300 amplitude were associated with decreases in incompatible reaction time on the Stroop task. An exercise program implemented during school-break time enhances adolescents' inhibitory control. This benefit seems to be due to an improved allocation of attentional resources towards the cognitive task.

Keywords
P300; Event-related potentials; Stroop task; Coordinative exercise; Executive control; Physical activity; Inhibition