Special issue: The neural basis of language learning / Dossier thématique: Les bases neuronales de l'apprentissage d'une langue

 

Neuropsychologia 

Volume 98, Pages 1-228, April 2017 

Special Issue: The Neural Basis of Language Learning /
Dossier thématique: Les bases neuronales de l'apprentissage d'une langue
Edited by / Dirigé par Kate Watkins, Denise Klein and Ingrid Johnsrude


The neural basis of language learning: Brief introduction to the special issue    
Pages 1-3 
Kate E. Watkins, Denise Klein, Ingrid S. Johnsrude

Ambiguous function words do not prevent 18-month-olds from building accurate syntactic category expectations: An ERP study    (Original Research Article) 
Pages 4-12 
Perrine Brusini, Ghislaine Dehaene-Lambertz, Marieke van Heugten, Alex de Carvalho, François Goffinet, Anne-Caroline Fiévet, Anne Christophe

The pace of vocabulary growth during preschool predicts cortical structure at school age    (Original Research Article) 
Pages 13-23 
Salomi S. Asaridou, Özlem Ece Demir-Lira, Susan Goldin-Meadow, Steven L. Small

Functional organization of the language network in three- and six-year-old children (Original Research Article)
Pages 24-33 
Kodjo Vissiennon, Angela D. Friederici, Jens Brauer, Chiao-Yi Wu

Bilingualism yields language-specific plasticity in left hemisphere's circuitry for learning to read in young children (Original Research Article)
Pages 34-45 
K.K. Jasińska, M.S. Berens, I. Kovelman, L.A. Petitto 

Morphology, orthography, and the two hemispheres: A divided visual field study with Hindi/Urdu biliterates (Original Research Article)
Pages 46-55 
Chaitra Rao, Jyotsna Vaid 

Neurophysiological evidence for the interplay of speech segmentation and word-referent mapping during novel word learning (Original Research Article)
Pages 56-67 
Clément François, Toni Cunillera, Enara Garcia, Matti Laine, Antoni Rodriguez-Fornells 

Learning and retrieving holistic and componential visual-verbal associations in reading and object naming (Original Research Article)
Pages 68-84 
Connor Quinn, J.S.H. Taylor, Matthew H. Davis 

Newly-acquired words are more phonologically robust in verbal short-term memory when they have associated semantic representations (Original Research Article)
Pages 85-97 
Nicola Savill, Andrew W. Ellis, Elizabeth Jefferies 

Category learning in Alzheimer’s disease and normal cognitive aging depends on initial experience of feature variability (Original Research Article)
Pages 98-110 
Jeffrey S. Phillips, Corey T. McMillan, Edward E. Smith, Murray Grossman 

Brain connections of words, perceptions and actions: A neurobiological model of spatio-temporal semantic activation in the human cortex (Original Research Article)
Pages 111-129 
Rosario Tomasello, Max Garagnani, Thomas Wennekers, Friedemann Pulvermüller 

Neural signatures of second language learning and control (Original Research Article)
Pages 130-138 
James Bartolotti, Kailyn Bradley, Arturo E. Hernandez, Viorica Marian 

The neural bases of the learning and generalization of morphological inflection (Original Research Article)
Pages 139-155 
Michael Nevat, Michael T. Ullman, Zohar Eviatar, Tali Bitan 

On neural correlates of individual differences in novel grammar learning: An fMRI study (Original Research Article)
Pages 156-168 
Olga Kepinska, Mischa de Rover, Johanneke Caspers, Niels O. Schiller 

The role of the left inferior parietal lobule in second language learning: An intensive language training fMRI study (Original Research Article)
Pages 169-176 
Elise B. Barbeau, Xiaoqian J. Chai, Jen-Kai Chen, Jennika Soles, Jonathan Berken, Shari Baum, Kate E. Watkins, Denise Klein 

Native-language N400 and P600 predict dissociable language-learning abilities in adults (Original Research Article)
Pages 177-191 
Zhenghan Qi, Sara D. Beach, Amy S. Finn, Jennifer Minas, Calvin Goetz, Brian Chan, John D.E. Gabrieli 

Personalized learning: From neurogenetics of behaviors to designing optimal language training (Original Research Article)
Pages 192-200 
Patrick C.M. Wong, Loan C. Vuong, Kevin Liu 

Magnetic resonance imaging of the brain and vocal tract: Applications to the study of speech production and language learning (Original Research Article)
Pages 201-211 
Daniel Carey, Carolyn McGettigan 

Cortical thickness increases after simultaneous interpretation training (Original Research Article)
Pages 212-219 
Alexis Hervais-Adelman, Barbara Moser-Mercer, Micah M. Murray, Narly Golestani 

Early bilingualism, language attainment, and brain development (Original Research Article)
Pages 220-227 
Jonathan A. Berken, Vincent L. Gracco, Denise Klein 

How learning in the present shapes future learning / La façon dont le cerveau apprend aujourd'hui influence l'apprentissage de demain

OUTREACH ARTICLE / ARTICLE DE VULGARISATION
(see related scientific article below / voir l'article scientifique correspondant plus bas)

Science Daily
Click here to access outreach article / Cliquer ici pour accéder à cet article de vulgarisation

How learning in the present shapes future learning - Prefrontal cortex shapes memory formation by modulating hippocampal encoding

Summary / Résumé

Neurons in the prefrontal cortex “teach” neurons in the hippocampus to “learn” rules that distinguish memory-based predictions in otherwise identical situations, suggesting that learning in the present helps guide learning in the future, according to research.

Des neurones dans le cortex préfrontal "enseignent" aux neurones de l'hippocampe à "apprendre" des règles permettant de faire des prédictions distinctes basées sur différents éléments en mémoire, dans des situations autrement identiques. Selon cette recherche, cela suggère que l'apprentissage d'aujourd'hui aide à guider les apprentissages subséquents. 


SCIENTIFIC ARTICLE / ARTICLE SCIENTIFIQUE

Guise, K. G., & Shapiro, M. L. (2017). Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding. Neuron, 94(1), 183-192.

DOI: 10.1016/j.neuron.2017.03.011

HIGHLIGHTS / FAITS SAILLANTS

  • mPFC differentiates memories during encoding to prevent interference /
    Le cortex préfrontal médial (CPFm) différencie les éléments en mémoire pendant leur encodage pour prévenir une potentielle interférence entre eux.
  • Population activity in both mPFC and CA1 predicts choices in single trials /
    L'activité neuronale dans le CPFm et la région CA1 de l'hippocampe prédit les choix dans des essais uniques.
  • mPFC influence on CA1 activity predicted subsequent learning speed /
    L'influence du CPFm sur l'activité neuronale de la région CA1 prédit la vitesse des apprentissages subséquents.
  • mPFC inactivation reduced pattern separation in CA1 representations /
    L'inactivation du CPFm diminue la différenciation des patrons dans les représentations neuronales de la région CA1.

ABSTRACT

The prefrontal cortex (PFC) is crucial for accurate memory performance when prior knowledge interferes with new learning, but the mechanisms that minimize proactive interference are unknown. To investigate these, we assessed the influence of medial PFC (mPFC) activity on spatial learning and hippocampal coding in a plus maze task that requires both structures. mPFC inactivation did not impair spatial learning or retrieval per se, but impaired the ability to follow changing spatial rules. mPFC and CA1 ensembles recorded simultaneously predicted goal choices and tracked changing rules; inactivating mPFC attenuated CA1 prospective coding. mPFC activity modified CA1 codes during learning, which in turn predicted how quickly rats adapted to subsequent rule changes. The results suggest that task rules signaled by the mPFC become incorporated into hippocampal representations and support prospective coding. By this mechanism, mPFC activity prevents interference by “teaching” the hippocampus to retrieve distinct representations of similar circumstances.

Keywords
hippocampus; CA1; learning; memory; neuronal representation; prefrontal cortex; proactive interference; recall; retrieval

The left intraparietal sulcus adapts to symbolic number in both the visual and auditory modalities: Evidence from fMRI

Vogel, S. E., Goffin, C., Bohnenberger, J., Koschutnig, K., Reishofer, G., Grabner, R. H., & Ansari, D. (2017). The left intraparietal sulcus adapts to symbolic number in both the visual and auditory modalities: Evidence from fMRI. NeuroImage, 153, 16-27.

DOI: http://dx.doi.org/10.1016/j.neuroimage.2017.03.048

HIGHLIGHTS / FAITS SAILLANTS

  • Habituating the brain to numbers yields a numerical ratio dependent signal recovery.
  • Both visual and auditory symbolic number processing is associated with the left IPS.
  • The neural signal recovery response to numbers is highly specific and reproducible.

ABSTRACT

A growing body of evidence from functional Magnetic Resonance Imaging adaptation (fMRIa) has implicated the left intraparietal sulcus (IPS) as a crucial brain region representing the semantic of number symbols. However, it is currently unknown to what extent the left IPS brain activity can be generalized across modalities (e.g., Arabic digits and spoken number words) and how robust and reproducible numerical adaptation effects are.

In two separate fMRIa experiments we habituated the brain response of 20 native English-speaking (Experiment 1) and 34 native German-speaking (Experiment 2) adults to Arabic digits or spoken number words. Consistent with previous findings, experiment 1 revealed numerical ratio dependent adaptation to Arabic numerals in the left IPS using both conventional and cortex-based alignment techniques. Experiment 2 revealed numerical ratio dependent signal recovery in the left IPS following adaptation to both Arabic numerals and spoken number words using both conventional and cortex-based alignment techniques. Together, these findings suggest that the left IPS is involved in symbolic number processing across modalities.

Keywords
Number representation; fMRI adaptation; Intraparietal sulcus (IPS); Number words; Numerical ratio; Arabic numerals

Are numbers grounded in a general magnitude processing system? / Les nombres sont-ils ancrés dans un système de traitement général de la magnitude?

Sokolowski, H. M., Fias, W., Ononye, C. B., & Ansari, D. (2017). Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis. Neuropsychologia. In Press.

DOI: http://dx.doi.org/10.1016/j.neuropsychologia.2017.01.019

HIGHLIGHTS / FAITS SAILLANTS

  • It is critical to synthesize inconsistent findings using quantitative meta-analyses. /
    Il est fort important de synthétiser les résultats incohérents ou contradictoires à l'aide de métaanalyses quantitatives.
     
  • Parietal and frontal lobes are activated by numerical and non-numerical magnitudes. /
    Les lobes pariétal et frontal sont activés dans le traitement de la magnitude numérique et non numérique.
     
  • Numerical and non-numerical magnitudes activate common and distinct brain regions. /
    Les traitements de la magnitude numérique et non numérique activent des régions cérébrales à la fois communes et distinctes.
     
  • Brain regions activated by numerical magnitudes depend on number formats. /
    Les régions activées par le traitement de la magnitude numérique dépend du format des nombres.


ABSTRACT

It is currently debated whether numbers are processed using a number-specific system or a general magnitude processing system, also used for non-numerical magnitudes such as physical size, duration, or luminance. Activation likelihood estimation (ALE) was used to conduct the first quantitative meta-analysis of 93 empirical neuroimaging papers examining neural activation during numerical and non-numerical magnitude processing. Foci were compiled to generate probabilistic maps of activation for non-numerical magnitudes (e.g. physical size), symbolic numerical magnitudes (e.g. Arabic digits), and nonsymbolic numerical magnitudes (e.g. dot arrays). Conjunction analyses revealed overlapping activation for symbolic, nonsymbolic and non-numerical magnitudes in frontal and parietal lobes. Contrast analyses revealed specific activation in the left superior parietal lobule for symbolic numerical magnitudes. In contrast, small regions in the bilateral precuneus were specifically activated for nonsymbolic numerical magnitudes. No regions in the parietal lobes were activated for non-numerical magnitudes that were not also activated for numerical magnitudes. Therefore, numbers are processed using both a generalized magnitude system and format specific number regions.

Keywords
Numerical magnitude; Non-numerical magnitude; Neural specialization; Functional magnetic resonance imaging; Symbolic; Nonsymbolic

Super-sized memory is trainable and long lasting / S'entrainer pour doper sa mémoire

Note: Related scientific article below / L'article scientifique en question est plus bas.

Lien vers l'article de vulgarisation en français / Link to outreach article in French

Radio-Canada:

Résumé
"Certains peuvent penser que la mémoire phénoménale est un don, mais c'est rarement le cas. Des chercheurs ont découvert qu'une méthode mnémotechnique employée par plusieurs champions du monde permet d'améliorer ses aptitudes de façon importante – si on est prêt à s'entraîner."

Summary (translation)
Many think that super-sized memory is a gift, but it's rarely the case. Researchers tested a mnemonic technique used by world champions to increase memory capacities in a significant way - as long as you train and put your mind to it. 
 

Lien vers l'article de vulgarisation en anglais / Link to outreach article in English

Science Daily:

Summary
"The ability to perform astonishing feats of memory, such as remembering lists of several dozen words, can be learned, researchers report. After 40 days using a strategic memory improvement technique, individuals who had typical memory skills at the start and no previous memory training more than doubled their memory capacity, going from recalling an average of 26 words from a list of 72 to remembering 62. Four months later, recall performance remained high."

Résumé (traduction libre)
La capacité de faire preuve d'une mémoire extraordinaire, comme mémoriser une liste de plusieurs douzaines de mots, peut être acquise, selon des chercheurs. Après 40 jours d'entrainement en utilisant une technique de
mémorisation stratégique, des individus ayant
une mémoire typique au préalable et n'ayant
jamais subi d'entrainement semblable, ont plus
que doublé leur capacité de mémorisation,
passant de 26 mots mémorisés, sur une liste en
comptant 72, à 62 mots. Quatre mois plus tard, leur
capacité de mémorisation est demeurée très élevée.


SCIENTIFIC ARTICLE

Mnemonic Training Reshapes Brain Networks to Support Superior Memory

Dresler, M., Shirer, W. R., Konrad, B. N., Müller, N. C. J., Wagner, I. C., Fernández, G., ... & Greicius, M. D. (2017). Mnemonic Training Reshapes Brain Networks to Support Superior Memory. Neuron, 93(5), 1227-1235.

(Link to scientific article / Lien vers l'article scientifique)

HIGHLIGHTS

  • Memory champions show distributed functional brain network connectivity changes
  • Mnemonic strategies for superior memory can be learned by naive subjects
  • Mnemonic training induces similarity with memory champion brain connectivity
  • Brain network dynamics of this effect differ between task and resting state

SUMMARY

Memory skills strongly differ across the general population; however, little is known about the brain characteristics supporting superior memory performance. Here we assess functional brain network organization of 23 of the world’s most successful memory athletes and matched controls with fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that, in a group of naive controls, functional connectivity changes induced by 6 weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain’s functional network organization to enable superior memory performance.