The role of mathematical anxiety and working memory on the performance of different types of arithmetic tasks

Le rôle de l'anxiété et de la mémoire de travail sur la performance dans différentes tâches mathématiques

SCIENTIFIC ARTICLE / ARTICLE SCIENTIFIQUE

Ashkenazi, S., & Danan, Y. (2017). The role of mathematical anxiety and working memory on the performance of different types of arithmetic tasks. Trends in Neuroscience and Education7, 1-10.

DOI: 10.1016/j.tine.2017.05.001

Abstract

Goal of the current study was to compare the respective roles of domain general cognitive skills with domain specific quantitative understanding, as well as the effect of math anxiety, on the performance of different types of arithmetic tasks. Fifty-eight adults performed a battery of tests. We found dissociations between domain general abilities that supported verbally or spatially mediated arithmetic tasks. The verbally mediated tasks were supported by the verbal central executive component of working memory, while the spatially mediated task, number line knowledge, was supported by the spatial central executive component of working memory. Different tasks had differential relationships with math anxiety: math anxiety effected school-like math tasks more than verbally mediated tasks and number line task. Math anxiety was negatively influenced by the spatial central executive component of working memory, indicating that spatial working memory can be a source of vulnerability to math anxiety.

Keywords
Working memory; Mathematical anxiety; Approximate number sense; Arithmetic; Verbal code of number

Effect of abacus training on executive function development and underlying neural correlates in Chinese children

Effet d'un entrainement avec boulier sur le développement des fonctions exécutives et corrélats neuraux sous-jacents

SCIENTIFIC ARTICLE / ARTICLE SCIENTIFIQUE

Wang, C., Weng, J., Yao, Y., Dong, S., Liu, Y., & Chen, F. (2017). Effect of abacus training on executive function development and underlying neural correlates in Chinese children. Human Brain Mapping.

DOI: 10.1002/hbm.23728

Abstract

Executive function (EF) refers to a set of cognitive abilities involved in self-regulated behavior. Given the critical role of EF in cognition, strategies for improving EF have attracted intensive attention in recent years. Previous studies have explored the effects of abacus-based mental calculation (AMC) training on several cognitive abilities. However, it remains unclear whether AMC training affects EF and its neural correlates. In this study, participants were randomly assigned to AMC or control groups upon starting primary school. The AMC group received 2 h AMC training every week, while the control group did not have any abacus experience. Neural activity during an EF task was examined using functional MRI for both groups in their 4th and 6th grades. Our results showed that the AMC group performed better and faster than the control group in both grades. They also had lower activation in the frontoparietal reigons than the control group in the 6thgrade. From the 4th to the 6th grade, the AMC group showed activation decreases in the frontoparietal regions, while the control group exhibited an opposite pattern. Furthermore, voxel-wise regression analyses revealed that better performance was associated with lower task-relevant brain activity in the AMC group but associated with greater task-relevant brain activity in the control group. These results suggest that long-term AMC training, with calculation ability as its original target, may improve EF and enhance neural efficiency of the frontoparietal regions during development.

Dispelling the myth: Training in education or neuroscience decreases but does not eliminate beliefs in neuromyths

Une formation en éducation ou en neurosciences réduit les neuromythes, mais ne les élimine pas complètement

Macdonald, K., Germine, L., Anderson, A., Christodoulou, J. & McGrath, L. M. (2017). Dispelling the myth: Training in education or neuroscience decreases but does not eliminate beliefs in neuromyths. Frontiers in Psychology.

DOI: 10.3389/fpsyg.2017.01314

Abstract

Neuromyths are misconceptions about brain research and its application to education and learning. Previous research has shown that these myths may be quite pervasive among educators, but less is known about how these rates compare to the general public or to individuals who have more exposure to neuroscience. This study is the first to use a large sample from the United States to compare the prevalence and predictors of neuromyths among educators, the general public, and individuals with high neuroscience exposure. Neuromyth survey responses and demographics were gathered via an online survey hosted at TestMyBrain.org. We compared performance among the three groups of interest: educators (N=598), high neuroscience exposure (N=234), and the general public (N=3045) and analyzed predictors of individual differences in neuromyths performance. In an exploratory factor analysis, we found that a core group of 7 “classic” neuromyths factored together (items related to learning styles, dyslexia, the Mozart effect, the impact of sugar on attention, right-brain/left-brain learners, and using 10% of the brain). The general public endorsed the greatest number of neuromyths (M=68%), with significantly fewer endorsed by educators (M=56%), and still fewer endorsed by the high neuroscience exposure group (M=46%). The two most commonly endorsed neuromyths across all groups were related to learning styles and dyslexia. More accurate performance on neuromyths was predicted by age (being younger), education (having a graduate degree), exposure to neuroscience courses, and exposure to peer-reviewed science. These findings suggest that training in education and neuroscience can help reduce but does not eliminate belief in neuromyths. We discuss the possible underlying roots of the most prevalent neuromyths and implications for classroom practice. These empirical results can be useful for developing comprehensive training modules for educators that target general misconceptions about the brain and learning.

Keywords
neuromyths, educational neuroscience, learning styles, dyslexia, neuroeducation

Brain changes accompany development of metamemory from childhood to adolescence

Le développement de la métamémoire (habileté à réfléchir sur ce dont on se souvient) de l'enfance à l'adolescence, au plan cérébral

OUTREACH ARTICLE / ARTICLE DE VULGARISATION
(see related scientific article below / voir l'article scientifique source plus bas)

Science Daily
Click here to access outreach article / Cliquer ici pour accéder à cet article de vulgarisation

Brain changes accompany development of metamemory from childhood to adolescence - Ability to reflect on memories improves memory quality

Summary
Being able to assess our own memories helps us to avoid errors and prompts us to collect more information to fill the gaps. The ability to assess memory quality appears in children. A new study shows metamemory continues to develop to early adolescence.

Résumé
Être capable d'évaluer ce dont on se souvient aide à éviter des erreurs et nous mène à chercher plus d'informations pour combler les "vides" en notre mémoire. Cette habileté appelée "métamémoire" apparait en bas âge. Une nouvelle étude montre que la métamémoire continue à se développer jusqu'au début de l'adolescence. 


SCIENTIFIC ARTICLE / ARTICLE SCIENTIFIQUE

Changes in ventromedial prefrontal and insular cortex support the development of metamemory from childhood into adolescence

Fandakova, Y., Selmeczy, D., Leckey, S., Grimm, K. J., Wendelken, C., Bunge, S. A., & Ghetti, S. (2017). Changes in ventromedial prefrontal and insular cortex support the development of metamemory from childhood into adolescence. Proceedings of the National Academy of Sciences, 114(29), 7582–7587.

DOI: 10.1073/pnas.1703079114

Abstract

Metamemory monitoring, or the ability to introspect on the accuracy of one’s memories, improves considerably during childhood, but the underlying neural changes and implications for intellectual development are largely unknown. The present study examined whether cortical changes in key brain areas hypothesized to support metacognition contribute to the development of metamemory monitoring from late childhood into early adolescence. Metamemory monitoring was assessed among 7- to 12-y-old children (n = 145) and adults (n = 31). Children returned for up to two additional assessments at 8 to 14 y of age (n = 120) and at 9 to 15 y of age (n = 107) (n = 347 longitudinal scans). Results showed that metamemory monitoring continues to improve from childhood into adolescence. More pronounced cortical thinning in the anterior insula and a greater increase in the thickness of the ventromedial prefrontal cortex over the three assessment points predicted these improvements. Thus, performance benefits are linked to the unique patterns of regional cortical change during development. Metamemory monitoring at the first time point predicted intelligence at the third time point and vice versa, suggesting parallel development of these abilities and their reciprocal influence. Together, these results provide insights into the neuroanatomical correlates supporting the development of the capacity to self-reflect, and highlight the role of this capacity for general intellectual development.

Commercial brain training has no effect on decision-making or cognitive function / Les entrainements (ex. Lumosity) n'ont pas d'effets sur les fonctions cognitives

OUTREACH ARTICLE / ARTICLE DE VULGARISATION
(see related scientific article below / voir l'article scientifique source plus bas)

Science Daily
Click here to access outreach article / Cliquer ici pour accéder à cet article de vulgarisation

Brain training has no effect on decision-making or cognitive function, researchers report

Summary
A recent study found that, not only did commercial brain training with Lumosity™ have no effect on decision-making, it also had no effect on cognitive function beyond practice effects on the training tasks.

Résumé
Une récente étude a démontré que non seulement un entrainement avec Lumosity™ n'avait pas d'effet sur les habiletés de prise de décision, mais qu'en plus il n'avait pas d'effet sur les fonctions cognitives au-delà d'un effet de pratique lié aux tâches spécifiques demandées. 


SCIENTIFIC ARTICLE / ARTICLE SCIENTIFIQUE

No effect of commercial cognitive training on neural activity during decision-making

Kable, J. W., Caulfield, M. K., Falcone, M., McConnell, M., Bernardo, L., Parthasarathi, T., ... & Diefenbach, P. (2017). No effect of commercial cognitive training on neural activity during decision-making. Journal of Neuroscience, 2832-16.

DOI: 10.1523/JNEUROSCI.2832-16.2017

Abstract

Increased preference for immediate over delayed and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pre- and post-training, participants completed cognitive assessments and functional magnetic resonance imaging (fMRI) during performance of validated decision-making tasks: delay discounting (choices between smaller rewards now vs. larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs. smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making, nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance.